Saturday, April 12, 2014

Solve the simultaneous equations x^2+y^2=10 , x^4+y^4=82

x^2+y^2=10     
(1)


x^4+y^4=82     
(2)



(x^2+y^2)^2=
x^4+2x^2y^2+y^4


Since  x^2+y^2=10  and x^4+y^4=82 we
have:



100=82+2xy^2    


then:


2x^2y^2=18  



(xy)^2=9


xy=3   
xy=-3


from (1)


x^2+y^2+2xy=
10+6=16


(x+y)^2=16     x+y=4   
xy=3


being symmetric:   x=1 y=3   x=3
y=1


 x+y=-4      xy=3       x=-1 y=-3    x=-3 
y=-1


or


x^2+2xy+y^2=
10-6=4


(x+y)^2=4        x+y=2    xy=-3     x=3 y=-1  x=-1
y=3


or


(x+y)^2=-4    
x+y=-2    xy=-3     x=-3 y=1  x=1 y=-3 


So the couples we
are searching for are:



(1,3),
(3,1),(-3,-1),(-1,-3),(3,-1),(-1,3),(-3,1),(1,-3)

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...