x^2+y^2=10
(1)
x^4+y^4=82
(2)
(x^2+y^2)^2=
x^4+2x^2y^2+y^4
Since x^2+y^2=10 and x^4+y^4=82 we
have:
100=82+2xy^2
then:
2x^2y^2=18
(xy)^2=9
xy=3
xy=-3
from (1)
x^2+y^2+2xy=
10+6=16
(x+y)^2=16 x+y=4
xy=3
being symmetric: x=1 y=3 x=3
y=1
x+y=-4 xy=3 x=-1 y=-3 x=-3
y=-1
or
x^2+2xy+y^2=
10-6=4
(x+y)^2=4 x+y=2 xy=-3 x=3 y=-1 x=-1
y=3
or
(x+y)^2=-4
x+y=-2 xy=-3 x=-3 y=1 x=1 y=-3
So the couples we
are searching for are:
(1,3),
(3,1),(-3,-1),(-1,-3),(3,-1),(-1,3),(-3,1),(1,-3)
No comments:
Post a Comment