Tuesday, April 8, 2014

Simplify [sin (x - pi/2)) / cos (pi - x)] + [tan (x - 3pi/2) / - tan (pi + x)

We'll re-write sin (x - pi/2) as -sin (pi/2 - x) = - cos
x.


cos (pi - x) = cos pi*cos x + sin pi*sin
x


But sin pi = 0 and cos pi =
-1


cos (pi - x) = -cos x


The
first term of the sum will become:


[sin (x - pi/2)) / cos
(pi - x)] = - cos x/- cos  = 1


We'll re-write the numerator
of the second term:


tan (x - 3pi/2) = - tan
x


The denominator of the 2nd term
is:


-tan(pi+x) = -(tan pi + tan x)/(1 - tanpi*tan
x)


But tan pi = 0


-tan(pi+x) =
-tan x/1


-tan(pi+x) = -tan
x


We'll re-write the second
term:


[tan (x - 3pi/2) / - tan (pi + x) = -tan x/-tan x =
1


The sum of the terms will
be:


[sin (x - pi/2)) / cos (pi - x)] + [tan (x - 3pi/2) / -
tan (pi + x) = 1+1


[sin (x - pi/2)) / cos (pi
- x)] + [tan (x - 3pi/2) / - tan (pi + x) = 2

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...