Tuesday, April 22, 2014

Prove: cos(x+y)cosy + sin(x + y)siny = cosx

cos(x+y)*cosy + sin(x+y)*siny =
cosx


First we will use trigonometric
identities.


We know
that:


cos(x+y) = cosx*cosy -
sinx*siny


sin(x+y) = sinx*cosy +
sinx*cosy


Now we will susbtitute into the
equation.


==> [cosx*cosy - sinx8siny) cosy +
(sinxcosy + cosx*siny)siny


We will expand the
brackets.


==> cosx*cos^2 y - sinx*siny*cosy +
sinx*siny*cosy + cosx*sin^2 y


We will reduce similar
terms


==> cosx*cos^2 y + cosx*sin^2


Now we will factor cosx from both
terms.


==> cosx*(cos^2 y + sin^2
y)


But sin^2 y + cos^2 y =
1


==> cosx*1 = cosx.................
q.e.d

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...