Since the trigonometric functions from numerator are
matching, we'll transform the difference into a
product:
cos x - cos 3x = 2[sin
(x+3x)/2]*[sin(3x-x)/2]
cos x - cos 3x = 2 sin2x *sin
x
We'll re-write the
fraction:
(cos x - cos 3x) / x*sin x = 2 sin2x *sin x/x*sin
x
We'll simplify and we'll
get:
2 sin2x *sin x/x*sin x = 2
sin2x/x
Now, we'll evaluate the
limit:
lim (cos x - cos 3x) / x*sin x = lim 2
sin2x/x
We'll create the remarcable
limit:
lim 2 sin2x/x = 2 lim
(sin2x/2x)*2
2 lim (sin2x/2x)*2 = 4 lim
(sin2x/2x)
But lim (sin2x/2x) =1, if x ->
0
lim (cos x - cos 3x) / x*sin x =
4
No comments:
Post a Comment