Friday, April 25, 2014

How to evaluate the limit of (cos x - cos 3x) / x*sin x if x-->0 ?

Since the trigonometric functions from numerator are
matching, we'll transform the difference into a
product:


cos x - cos 3x = 2[sin
(x+3x)/2]*[sin(3x-x)/2]


cos x - cos 3x = 2 sin2x *sin
x


We'll re-write the
fraction:


(cos x - cos 3x) / x*sin x = 2 sin2x *sin x/x*sin
x


We'll simplify and we'll
get:


2 sin2x *sin x/x*sin x = 2
sin2x/x


Now, we'll evaluate the
limit:


lim (cos x - cos 3x) / x*sin x = lim 2
sin2x/x


We'll create the remarcable
limit:


lim 2 sin2x/x = 2 lim
(sin2x/2x)*2


2 lim (sin2x/2x)*2 = 4 lim
(sin2x/2x)


But lim (sin2x/2x)  =1, if x ->
0


lim (cos x - cos 3x) / x*sin x =
4

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...