Sum k!*k = 1!*1 + 2!*2 + ... +
            n!*n
We can add and subtract 1, so
            that:
Sum k!*(k + 1 - 1) = Sum k!*(k+1) - Sum
            k!
But k!*(k+1) = (k+1)!
We'll
            re-write the sum:
Sum k!*(k+1) - Sum k! = Sum (k+1)! - Sum
            k!
Sum (k+1)! = 2! + 3! + ... + n! + (n+1)!
            (1)
Sum k! = 1! + 2! + 3! + ... + n!
            (2)
We'll subtract (2) from
            (1):
Sum (k+1)! - Sum k!=2! + 3! + ..+ n! + (n+1)! - 1! -
            2! - 3! - .. - n!
We'll eliminate like
            terms:
Sum (k+1)! - Sum k! = (n+1)! -
            1
Sum k!*k = (n+1)! -
            1
No comments:
Post a Comment