Wednesday, April 9, 2014

calculate sum k!*k for k=1 to k=n

Sum k!*k = 1!*1 + 2!*2 + ... +
n!*n


We can add and subtract 1, so
that:


Sum k!*(k + 1 - 1) = Sum k!*(k+1) - Sum
k!


But k!*(k+1) = (k+1)!


We'll
re-write the sum:


Sum k!*(k+1) - Sum k! = Sum (k+1)! - Sum
k!


Sum (k+1)! = 2! + 3! + ... + n! + (n+1)!
(1)


Sum k! = 1! + 2! + 3! + ... + n!
(2)


We'll subtract (2) from
(1):


Sum (k+1)! - Sum k!=2! + 3! + ..+ n! + (n+1)! - 1! -
2! - 3! - .. - n!


We'll eliminate like
terms:


Sum (k+1)! - Sum k! = (n+1)! -
1


Sum k!*k = (n+1)! -
1

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...