Sunday, February 14, 2016

What is cos x if tan x=6/11?Solve using right triangle

We'll write the fundamental formula in
trigonometry:


(sin x)^2 + (cos x)^2 =
1


If you divide the above formula with (cos
x)^2


(sin x)^2/(cos x)^2 + 1= 1/(cos
x)^2


But the tangent function is the ratio between sin
x/cos x, so (sin x)^2/(cos x)^2 = (tan x)^2


(tan x)^2+ 1 =
1/(cos x)^2


(cos x)^2[(tan x)^2+ 1] =
1


(cos x)^2 = 1/[(tan x)^2+
1]


cos x = sqrt1/[(tan x)^2+
1]


cos x = sqrt[1/[(6/11)^2 +
1]


cos x = sqrt[1/[(36/121) +
1]


cos x =
sqrt[1/(36+121)/121]


cos x = sqrt
(121/157)


cos x = 11/sqrt
157

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...