Sunday, February 21, 2016

Find the indefinite integral of 1/(cos^2x-cos^4x).

First, we'll re-write the denominator. We notice that we
can factorize it by (cos x)^2:


1/[(cos x)^2 - (cos x)^4] =
1/(cos x)^2[1 - (cos x)^2]


We'll  also substitute the
numerator1, by the fundamental formula of
trigonometry:


(sin x)^2 + (cos x)^2 =
1


We notice that [1 - (cos x)^2] = (sin
x)^2


We'll re-write the
ratio:


1/(sin x)^2*(cos x)^2=[(sin x)^2 + (cos x)^2]/(sin
x)^2*(cos x)^2


1/(sin x)^2*(cos x)^2 = (sin x)^2/(sin
x)^2*(cos x)^2 + (cos x)^2/(sin x)^2*(cos x)^2


We'll
simplify the fractions:


1/(sin x)^2*(cos x)^2 = 1/(cos
x)^2 + 1/(sin x)^2


We'll integrate both
sides:


Int dx/(sin x)^2*(cos x)^2 = Int dx/(cos x)^2 + Int
dx/(sin x)^2


Int dx/(sin x)^2*(cos x)^2 = tan
x - cotan x + C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...