l 3x^2 - 9x +4 l = 14
We have
two cases:
Case(1);
3x^2 - 9x
+ 4 = 14
==> 3x^2 - 9x +4 -14 =
0
==> 3x^2 - 9x -10 =
0
Now we will use the quadratic equation to solve for
x.
==> x1 = ( 9 + sqrt(81+4*3*10) /
6
= ( 9 + sqrt(201) /
6
==> x1= ( 3/2) + sqrt(210) /
6
==> x2= (3/2) -
sqrt(210) /
6
Case(2).
==>
-(3x^2 -9x +4 ) = 14
==> -3x^2 + 9x -4 =
14
==> -3x^2 + 9x -18 =
0
==> x1= ( -9 + sqrt(81-4*3*18) /
-6
= ( -9 + sqrt(135)*i ) /
-6
= ( 3/2) + 3sqrt(15) i
/6
= (3/2) + (sqrt15 /2
)*i
==> x1= (3/2) + (sqrt15 / 2)
*i
==> x2 = (3/2) -
9sqrt15 /2)*i
No comments:
Post a Comment