Thursday, December 18, 2014

What is the probability that a number selected at random from the set {2, 3, 7, 12, 15, 22, 72, 108}will be divisible by both 2 and 3 ?

Given the numbers : 2, 3, 7, 12, 15, 22, 72,
108


We need to determine the probability of choosing a
number divisible by 2 and 3.


Let us determine which numbers
in the set are divisible by both 2 and 3.


2 ==>
divisible by 2.


3 ==> divisible by
3


7 ==>
None


12 ==> divisible
by 2 and 3


15 ==> divisible by
3


22 ==> divisible by
2


72 ==> divisible by 2
and 3.


108 ==>
divisible by 2 and 3


The bold font numbers are the numbers
divisible by both 2 and 3.


Then the probability of getting
a number that is divisible by 2 and 3 = the total number of elements divisible by 2 and
3 / total number of elements


==> P = 3 /
8


Then the probability is
3/8

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...