The antiderivative of a function is the indefinite
integral of the given function.
Int f(x)dx = Int e^x*cos^2x
dx
We'll substitute the square of cosine of function, by
the formula:
(cos x)^2 = (1 + cos
2x)/2
We'll re-write the
integral:
Int e^x*cos^2x dx = Int e^x*(1 + cos
2x)dx/2
We'll apply the additive property of indefinite
integrals:
Int e^x*(1 + cos 2x)dx/2 = Int e^xdx/2 + Int
(e^x*cos 2x)dx/2
We'll note Int e^xdx/2 =
I1
Int (e^x*cos 2x)dx/2 =
I2
I1 = e^x/2 + C (1)
We'll
solve I2 by parts:
u = cos 2x => du = -2 sin
2x
dv = e^xdx => v =
e^x
I2 = u*v - Int vdu
I2 =
e^x*cos 2x + 2Int e^x*sin 2x dx
We'll solve 2Int e^x*sin 2x
dx by parts:
u = sin 2x => du = 2 cos
2x
dv = e^xdx => v =
e^x
2Int e^x*sin 2x = 2e^x*sin 2x - 4 Int e^x*cos
2xdx
But Int e^x*cos 2xdx =
I2
I2 = e^x*cos 2x + 2e^x*sin 2x - 4
I2
We'll add 4I2 both
sides:
5I2 = e^x*cos 2x + 2e^x*sin
2x
I2 = (e^x*cos 2x + 2e^x*sin 2x)/5 +
C (2)
Int e^x*(1 + cos 2x)dx/2 = (1) +
(2)
Int e^x*(1 + cos 2x)dx/2 = e^x/2 +
(e^x*cos 2x + 2e^x*sin 2x)/10 + C
No comments:
Post a Comment