Thursday, December 25, 2014

Find the antiderivative of the function y=e^x*cos^2x .

The antiderivative of a function is the indefinite
integral of the given function.


Int f(x)dx = Int e^x*cos^2x
dx


We'll substitute the square of cosine of function, by
the formula:


(cos x)^2 = (1 + cos
2x)/2


We'll re-write the
integral:


Int e^x*cos^2x dx = Int e^x*(1 + cos
2x)dx/2


We'll apply the additive property of indefinite
integrals:


Int e^x*(1 + cos 2x)dx/2 = Int e^xdx/2 + Int
(e^x*cos 2x)dx/2


We'll note Int e^xdx/2 =
I1


Int (e^x*cos 2x)dx/2 =
I2


I1 = e^x/2 + C (1)


We'll
solve I2 by parts:


u = cos 2x => du = -2 sin
2x


dv = e^xdx => v =
e^x


I2 = u*v - Int vdu


I2 =
e^x*cos 2x + 2Int e^x*sin 2x dx


We'll solve 2Int e^x*sin 2x
dx by parts:


u = sin 2x => du = 2 cos
2x


dv = e^xdx => v =
e^x


2Int e^x*sin 2x = 2e^x*sin 2x - 4 Int e^x*cos
2xdx


But Int e^x*cos 2xdx =
I2


I2 = e^x*cos 2x + 2e^x*sin 2x - 4
I2


We'll add 4I2 both
sides:


5I2 = e^x*cos 2x + 2e^x*sin
2x


I2 = (e^x*cos 2x + 2e^x*sin 2x)/5 +
C (2)


Int e^x*(1 + cos 2x)dx/2 = (1) +
(2)


Int e^x*(1 + cos 2x)dx/2 = e^x/2 +
(e^x*cos 2x + 2e^x*sin 2x)/10 + C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...