sin3x = 2sin^3 x
First we
will rewrite:
sin3x =
sin(2x+x)
But we know that
:
sin(A+B) = sinAcosB +
cosAsinB
==> sin(2x+x) = sin2xcosx +
sinxcos2x
But sin2x =
2sinxcosx
==> sin3x = 2sinxcosxcosx + sinx (1-2sin^2
x)
= 2sinxcos^2x + sinx ( 1- 2sin^2
x)
=2sinx ( 1-sin^2 x) + sinx ( 1- 2sin^2
x)
= 2sinx -2sin^3 x + sinx - 2sin^3
x
==> sin3x = 3sinx - 4sin^3 x = 2sin^3
x
==> 3sinx = 6sin^3
x
Divide by 3
==> sinx
= 2sin^3 x
==> 2sin^3 x - sinx =
0
==> sinx( 2sin^2 x -1) =
0
==> sinx = 0 ==> x = o, pi,
2pi
==> sin^2 x -1 =
0
==> sin^2 x =
1/2
==> sinx =
1/sqrt2
==> x = pi/4 ,
3pi/4
==> x = { 0, pi/4, 3pi/4, 2pi }
+ 2npi n= 0, 1, 2, ....
No comments:
Post a Comment