Thursday, December 18, 2014

Solve for x : sin3x=2sin^3x

sin3x = 2sin^3 x


First we
will rewrite:


sin3x =
sin(2x+x)


But we know that
:


sin(A+B) = sinAcosB +
cosAsinB


==> sin(2x+x) = sin2xcosx +
sinxcos2x


But sin2x =
2sinxcosx


==> sin3x = 2sinxcosxcosx + sinx (1-2sin^2
x)


                = 2sinxcos^2x + sinx  ( 1- 2sin^2
x)


                =2sinx ( 1-sin^2 x) + sinx ( 1- 2sin^2
x)


                 = 2sinx -2sin^3 x + sinx - 2sin^3
x


==> sin3x = 3sinx - 4sin^3 x = 2sin^3
x


    ==> 3sinx = 6sin^3
x


Divide by 3


==> sinx
= 2sin^3 x


==> 2sin^3 x - sinx =
0


==> sinx( 2sin^2 x -1) =
0


==> sinx = 0 ==> x = o, pi,
2pi


==> sin^2 x -1 =
0


==> sin^2 x =
1/2


==> sinx =
1/sqrt2


==> x = pi/4 ,
3pi/4


==> x = { 0, pi/4, 3pi/4, 2pi }
+ 2npi  n= 0, 1, 2, ....

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...