Saturday, January 5, 2013

sec^2 x - sec^2 y = tan^2 x - tan^2 y

We notice the differences of squares from both
sides:


(sec x)^2 - (sec y)^2 = (sec x - sec y)(sec x + sec
y)


(tan x)^2 - (tan y)^2 = (tan x - tan y)(tan x + tan
y)


We also know that sec x = 1/cos x and sec y = 1/cos
y


sec x - sec y = 1/cos x - 1/cos
y


sec x - sec y = (cos y - cos x)/cos y*cos
x


cos y - cos x =
2sin[(x+y)/2]sin[(x-y)/2]


sec x + sec y = 1/cos x + 1/cos
y


sec x + sec y = (cos y + cos x)/cos y*cos
x


cos y + cos x =
2cos[(x+y)/2]cos[(x-y)/2]


(sec x - sec y)(sec x + sec y) =
sin 2[(x+y)/2]*sin 2[(x-y)/2]/(cos y*cos x)^2


We'll
simplify and we'll get:


(sec x - sec y)(sec x
+ sec y) = sin (x+y)*sin (x-y)/(cos y*cos
x)^2


We'll work now on the right side of the
equal:


tan x = sin x/cos x


tan
y = sin y/cos y


tan x - tan y = (sin x*cosy -
siny*cosx)/cos x*cos y


tan x - tan y = sin (x-y)/cos x*cos
y


tan x + tan y = sin (x+y)/cos x*cos
y


(tan x - tan y)(tan x + tan y) = sin
(x-y)*sin (x-y)/(cos x*cos y)^2


We notice
that we've get the same expression both sides, so the identity is
verified.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...