Friday, January 4, 2013

If tan x = a/(a+1) and tan y = 1/(2a+1) prove that x+y=pi/4.

x + y = pi/4 if and only if tan (x+y) = tan pi/4 =
1


So, we'll have to prove that tan (x+y) =
1.


We'll apply the formula of tangent of the sum of 2
angles:


tan (x + y) = (tan x + tan y)/(1 - tan x*tan y)
(1)


We know that tan x = a/(a+1) and tan y = 1/(2a+1) and
we'll substitute them in (1).


tan (x + y) = [a/(a+1) +
1/(2a+1)]/{1 -[a/(a+1)]*[1/(2a+1)]}


tan (x + y) =
[(2a^2+a+a+1)/(a+1)(2a+1)]/{[(a+1)(2a+1) -
a]/(a+1)(2a+1)]}


We'll combine like terms ad we'll
simplify:


tan (x + y) = (2a^2+2a+1)/(2a^2 + 3a + 1 -
a)


tan (x + y) = (2a^2 + 2a + 1)/(2a^2 + 2a +
1)


We notice that the numerator and denominator are
equal:


tan (x + y) = 1
q.e.d.


Since tan (x + y) = 1, then x + y =
pi/4.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...