Monday, March 14, 2011

Proving Trigonometric Identities Prove: sin^4A + 2cos^2A - cos^4A = 1

Here we have to prove that : (sin A)^4 + 2 (cos A)^2 -
(cos A)^4 = 1.


We use the relation that ( sin A)^2 + (cos
A)^2 = 1


(sin A)^4 + 2 (cos A)^2 - (cos
A)^4


=> [(sin A)^2]^2 + 2 (cos A)^2 - [(cos
A)^2]^2


=> [(sin A)^2]^2 + 2*[1 - (sin A)^2] - [(cos
A)^2]^2


=> [(sin A)^2]^2 + [2 - 2*(sin A)^2] - [(cos
A)^2]^2


=> [(sin A)^2]^2 - [(cos A)^2]^2 + [2 -
2*(sin A)^2]


using a^2 - b^2 = ( a - b)( a +
b)


=> [(sin A)^2 - (cos A)^2][(sin A)^2 + (cos
A)^2]+ [2 - 2*(sin A)^2]


=> [(sin A)^2 - (cos
A)^2]*1 + [2 - 2*(sin A)^2]


=> (sin A)^2 - (cos A)^2
+ 2 - 2*(sin A)^2


=> - (cos A)^2 + 2 - (sin
A)^2


=> - [ (cos A)^2 + (sin A)^2] +
2


=> -1 + 2


=>
1


Therefore (sin A)^4 + 2 (cos A)^2 - (cos
A)^4 = 1.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...