We have to prove [sin 3a + sin a + sin 5a]/ [cos 3a+cos
a+cos 5a] = tan 3a
We start with [sin 3a + sin a + sin 5a]/
[cos 3a+cos a+cos 5a]
We use the formula: sin A + sin B = 2
sin [ (A + B) / 2 ] cos [ (A - B) / 2 ] and cos A + cos B = 2 cos [ (A + B) / 2 ] cos [
(A - B) / 2 ]
[sin 3a + sin a + sin 5a]/ [cos 3a+cos a+cos
5a]
=> [sin 3a + 2 sin [(a + 5a) / 2] cos [ (5a -
a) / 2 ]/ [cos 3a+ 2 cos [ (a + 5a) / 2] cos [ (5a - a) / 2 ]
=> [sin 3a + 2 sin 3a * cos 2a]/ [cos 3a+ 2 cos 3a
cos 2a ]
=> [sin 3a ( 1 + 2 cos 2a)] / [cos 3a ( 1 +
2 cos 2a)]
=> sin 3a / cos
3a
=> tan
3a
This proves [sin 3a + sin a + sin 5a]/
[cos 3a+cos a+cos 5a] = tan 3a
No comments:
Post a Comment