We'll apply the mean theorem of a geometric
series:
b^2 = a*c
sqrt b^2 =
sqrt a*c
b = sqrt a*c (1)
c^2
= b*d
c = sqrt b*d (2)
We'll
multiply bc = sqrt a*b*c*d
But b = a*r, where r is the
common ratio.
c = a*r^2
d =
a*r^3
a*b*c*d =
a*a*r*a*r^2*a*r^3
a*b*c*d =
a^4*r^6
sqrt a*b*c*d = sqrt
a^4*r^6
sqrt a*b*c*d =
a^2*r^3
bc = a^2*r^3 (3)
ad =
a*a*r^3 (4)
We'll subtract (4) from
(3):
a^2*r^3 - a^2*r^3 = 0
So,
the result of the difference is:
ad - bc = 0,
if and only if a,b,c,d are the terms of a geometric
series.
No comments:
Post a Comment