Sunday, May 31, 2015

Simplify the fraction [(a+i)^3-(a-i)^3]/[(a+i)^2-(a-i)^2]

We'll re-write the difference of cubes from
numerator:


(a+i)^3-(a-i)^3 = (a + i - a + i)[(a+i)^2 +
(a+i)(a-i) + (a-i)^2]


We'll combine and eliminate like
terms:


(a+i)^3-(a-i)^3 = (2 i)(a^2 + 2ai + i^2 + a^2 - i^2
+ a^2 - 2ai + i^2)


(a+i)^3-(a-i)^3 = (2 i)(3a^2 +
i^2)


(a+i)^3-(a-i)^3 = (2 i)(3a^2
-1)


We'll re-write the difference of squares from
numerator:


[(a+i)^2-(a-i)^2] = (a + i - a + i)(a + i + a -
i)


We'll combine and eliminate like
terms:


[(a+i)^2-(a-i)^2] =
2i*2a


We'll re-write the
fraction:


 (2 i)(3a^2 -1)/2i*2a = (3a^2
-1)/2a


3a^2 -1  = (a*sqrt3 - 1)(a*sqrt3 +
1)


[(a+i)^3-(a-i)^3]/[(a+i)^2-(a-i)^2] =
[(a*sqrt3 - 1)(a*sqrt3 + 1)]/2a

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...