Given the curve f(x) = x^3 -
5
We need to find the definite integral on the interval [1,
2].
Let us intergrate
f(x).
Let F(x) = intg
f(x)
==> The defininte integral is
:
I = F(2) - F(1).
==>
F(x) = intg (x^3 - 5) dx
= intg x^3 dx - intg
5 dx
= x^4/4 - 5x +
C
==> F(2) = 2^4/4 - 5*2 +
C
= 4 - 10 + c = -6 +
c
==> F(1) = 1/4 - 5 + C = -19/4 +
C
==> I = -6 + 19/4 = ( -24 + 19) /4 =
-5/4
==> Then, the integral is I =
-5/4
No comments:
Post a Comment