To answer this question, split up the line integral into
two pieces:
intc (x + 2y)dx and intc (x -
y)dy.
Our parameter is t, 0<=t<=pi/4 (I
assume, because your problem statement gives inf <-- t < 0, which diverges
)
We need to convert dx, dy into
dt:
x = 2 cos t --> dx = -2 sin t
dt
y = 4 sin t --> dy = 4 cos
t
Now,
intc (x + 2y)dx = int [
(2 cos t + 8 sin t) ( -2 sin t ) dt , 0<= t
<=pi/4]
= int [ -4 costsint - 16sint^2, 0<= t
<=pi/4 ]
And,
= intc (x
- y)dy = int [ (2 cos t - 4 sin t) ( 4 cos t ) dt , 0<= t
<=pi/4]
= int [ 8 cost^2 - 16 costsint, 0<= t
<=pi/4 ]
So,
intc (x +
2y)dx + intc (x - y)dy = int[ 8 cost^2 - 20 costsint - 16 sint^2, 0<= t
<=pi/4 ]
=-4 t + 5 cos(2 t) + 6 sin(2 t) + C,
evaluated from 0<=t<=pi/4
= 1 -
pi = 2.14
No comments:
Post a Comment