Saturday, June 7, 2014

Evaluate the line integral: int c (x+2y)dx +(x-y)dy where c is the curve x=2cost, y=4sint 0≥t≤pi/4

To answer this question, split up the line integral into
two pieces:


intc (x + 2y)dx   and   intc (x -
y)dy.


Our parameter is t,  0<=t<=pi/4    (I
assume, because your problem statement gives inf <-- t < 0, which diverges
)


We need to convert dx, dy  into
dt:


x = 2 cos t   -->  dx = -2 sin t
dt


y = 4 sin t  -->  dy = 4 cos
t


Now,


intc (x + 2y)dx = int [
(2 cos t + 8 sin t) ( -2 sin t ) dt , 0<= t
<=pi/4]


= int [ -4 costsint - 16sint^2, 0<= t
<=pi/4 ]


And,


= intc (x
- y)dy = int [ (2 cos t - 4 sin t) ( 4 cos t ) dt , 0<= t
<=pi/4]


= int [ 8 cost^2 - 16 costsint, 0<= t
<=pi/4 ]


So,


intc (x +
2y)dx  + intc (x - y)dy = int[ 8 cost^2 - 20 costsint - 16 sint^2, 0<= t
<=pi/4 ]


=-4 t + 5 cos(2 t) + 6 sin(2 t) + C,
evaluated from 0<=t<=pi/4


= 1 -
pi = 2.14

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...