To answer this question, split up the line integral into
            two pieces:
intc (x + 2y)dx   and   intc (x -
            y)dy.
Our parameter is t,  0<=t<=pi/4    (I
            assume, because your problem statement gives inf <-- t < 0, which diverges
            )
We need to convert dx, dy  into
            dt:
x = 2 cos t   -->  dx = -2 sin t
            dt
y = 4 sin t  -->  dy = 4 cos
            t
Now,
intc (x + 2y)dx = int [
            (2 cos t + 8 sin t) ( -2 sin t ) dt , 0<= t
            <=pi/4]
= int [ -4 costsint - 16sint^2, 0<= t
            <=pi/4 ]
And,
= intc (x
            - y)dy = int [ (2 cos t - 4 sin t) ( 4 cos t ) dt , 0<= t
            <=pi/4]
= int [ 8 cost^2 - 16 costsint, 0<= t
            <=pi/4 ]
So,
intc (x +
            2y)dx  + intc (x - y)dy = int[ 8 cost^2 - 20 costsint - 16 sint^2, 0<= t
            <=pi/4 ]
=-4 t + 5 cos(2 t) + 6 sin(2 t) + C,
            evaluated from 0<=t<=pi/4
= 1 -
            pi = 2.14
 
No comments:
Post a Comment