Monday, June 23, 2014

Find the antiderivative of f(x)=1/(1+x^2)*arctanx.

To find the anti derivative of f(x)=1/(1+x^2)*arctan
x.


Int f(x) dx = Int {dx/(1+x^2)}*arctan
x.


Put arctan x = t,    dx/(1+x^2 =
dt.


Therefore Int f(x) dx = (1/1+x^2)t * dx =
tdt.


Int f(x) = t^2/2 = (1/2)(arctan x)
+C.


Also if you meant  f(x) =
1/{(1+x^2)*arctanx},


Then Int f(x) dx =Int{ 1/[(1+x^2)
arctan x]} dx = dt/t.


Int f(x) dx = log t +
C.


Int f(x) dx = log (arctan x) +
C.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...