To find the anti derivative of f(x)=1/(1+x^2)*arctan
            x.
Int f(x) dx = Int {dx/(1+x^2)}*arctan
            x.
Put arctan x = t,    dx/(1+x^2 =
            dt.
Therefore Int f(x) dx = (1/1+x^2)t * dx =
            tdt.
Int f(x) = t^2/2 = (1/2)(arctan x)
            +C.
Also if you meant  f(x) =
            1/{(1+x^2)*arctanx},
Then Int f(x) dx =Int{ 1/[(1+x^2)
            arctan x]} dx = dt/t.
Int f(x) dx = log t +
            C.
Int f(x) dx = log (arctan x) +
            C.
 
No comments:
Post a Comment