To find the anti derivative of f(x)=1/(1+x^2)*arctan
x.
Int f(x) dx = Int {dx/(1+x^2)}*arctan
x.
Put arctan x = t, dx/(1+x^2 =
dt.
Therefore Int f(x) dx = (1/1+x^2)t * dx =
tdt.
Int f(x) = t^2/2 = (1/2)(arctan x)
+C.
Also if you meant f(x) =
1/{(1+x^2)*arctanx},
Then Int f(x) dx =Int{ 1/[(1+x^2)
arctan x]} dx = dt/t.
Int f(x) dx = log t +
C.
Int f(x) dx = log (arctan x) +
C.
No comments:
Post a Comment