Friday, February 14, 2014

What is f(x) if f'(x)=25x^4+2e^2x ?

To calculate a function, when knowing it's derivative,
we'll have to integrate the expression of derivative.


We'll
determine the indefinite integral of f'(x)=
25x^4+2e^2x.


Int f'(x)dx = f(x) +
C


Int (25x^4+2e^2x)dx


We'll
use the property of the indefinite integral, to be
additive:


Int (25x^4+2e^2x)dx  =Int (25x^4)dx + Int
(2e^2x)dx 


Int (25x^4)dx = 25*x^(4+1)/(4+1) +
C


Int (25x^4)dx = 25x^5/5 +
C


Int (25x^4)dx = 5x^5 + C
(1)


Int 2e^2xdx = 2*e^2x/2 +
C


Int 2e^2xdx = e^2x + C
(2)


We'll add: (1)+(2)


Int
(25x^4+2e^2x)dx = 5x^5 + e^2x  + C


So, the function
is:


f(x) = 5x^5 + e^2x +
C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...