Monday, February 17, 2014

Find solution to exercise:What is integral of (cos x)*(e^2x)?

let f(x) = cosx*e^2x


We need
to find the integral of f(x).


==> intg f(x) = intg
cosx * e^2x dx


We will use partial integration to
solve.


Let us assume that:


u=
e^2x   ==>    du = 2e^2x dx


dv = cosx dx 
==>    v = sinx


==> intg udv = u*v - intg
vdu


                     = sinx*e^2x + 2 intg sinx*e^2x
dx.............(1)


Now we will apply the rule
again.


Let u = e^2x  ==>   du
2e^2x


      dv = sinx dx  ==>    v =
-cosx


==> intg sinx*e^2x dx = -cosx*e^2x +2 intg
cosx*e^2x dx


==> But we know that intg cosx*e^2x dx
= intg udv


==> intg udv = sinx*e^2x + 2[
cosx*e^2x -2intg udv]


==> intg udv = sinx*e^2x +
2cosx*e^2x -4intg udv.


==> 5intg udv =
sinx*e^2x +2cosx*e^2x


==> intg udv =
e^2x ( sinx+2cosx) / 5

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...