Prove Sin A + Sin B + Sin C - Sin(A+B+C) = 4 Sin ((A+B)/2)
Sin ((B+C)/2) Sin ((C+A)/2).
Given A+B+C = 180
degree.
We use sin x+sin y = 2sin(x+y)/2
*cos(x-y)/2.
So Sin A+sin B = 2 sin (A+B)/2 *
sin(A-B)/2.
Therefore Sin A+Sin B+ sin C = 2sin (A+B)/2*co
sA-B)/2+ sin (180 -(A+B)),as A+B+C = 180 degrees by data.
=
2sin (A+B)/2* cos (A-B)/2 + sin (A+B) , as sin (180-x) = sin
x.
= 2sin (A+B)/2cos (A-B)/2 + 2sin (A+B)/2*cos A+B)/2, as
sin 2x = 2sin x*cos x.
= 2sin (A+B)/2 {cos (A-B)/2 +cos
(A+B)/2}
= 2sin (A+B)/2 {2 cos A/2*cos
B/2}.
= 4( cos C/2 )(cos A/2)(cos B/2), as sin (A+B)/2 =
sin (90-C/2) = cos C/2.
Therefore sin A+sin B+ sin C =
sin A+sin B+ sin C - sin (A+B+C) = 4cos A/2*cos B/2*cos C/2 = 4sin (A+B)/2*sin (B+C)/2*
sin(C+A)/2.
as sin (A+B+C) = sin 180 deg = 0. And sin
(A+B)/2 = cos C/2, sin(B+C)/2 = cos A/2 and sin (C+A)/2 = cos
B/2.
No comments:
Post a Comment