Tuesday, February 18, 2014

Solve for x: 16^2 + (7 - x)^2 = 22- (2x/5)^2

The equation you gave is : 16^2 + (7=x)^2 = (22-
(2x/5)^2


I think it should be 16^2 + (7 - x)^2 = 22 -
(2x/5)^2, the appropriate changes have been made.


16^2 + (7
- x)^2 = 22 - (2x/5)^2


=> 16^2 + 49 + x^2 - 14x = 22
- 4x^2 / 25


=> (305 + x^2 - 14x)* 25 = 22*25 -
4x^2


=> 305*25 + 25x^2 - 350x = 550 -
4x^2


=> 7625 + 25x^2 - 350x = 550 -
4x^2


=> 29x^2 - 350x + 7075 =
0


x1 = [-b + sqrt (b^2 - 4ac)] /
2a


=> x1 = [ 350 + sqrt ( 350^2 -
820700)]/58


=> x1 = [ 350 + sqrt (
-698200)]/58


=> x1 = 350 / 58 + i* (10/58)*sqrt
6982


x2 = 350 / 58 - i* (10/58)*sqrt
6982


The required solution of x is 350 / 58 +
i* (10/58)*sqrt 6982 and 350 / 58 - i* (10/58)*sqrt
6982

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...