Thursday, January 30, 2014

What is x if cos^2(x/2)-2cos^2x=(3/2)*square root2(1+cosx)+2sin^2x?

The first step is to move all terms to the left
side side:


(cos x/2)^2 - 2(cos x)^2 - (3/2)*square
root2(1+cosx) - 2(sin x)^2 = 0


We recognize the formula for
the half angle:


square root[(1+cosx)/2] =  (cos
x/2)


We'll re-group the
terms:


(cos x/2)^2 - 2[(sin x)^2 + (cos x)^2] -
[3*2(cos x/2)]/2= 0


We'll
write the fundamental formula of trigonometry;


[(sin x)^2 +
(cos x)^2] = 1


The equation will
become:


(cos x/2)^2 - 2- 3(cos x/2) =
0


We'll substitute cos x/2 =
t


t^2 - 3t - 2 = 0


We'll apply
quadratic formula:


t1 = [-3 + sqrt(9 +
8)]/2


t1 = (-3 + sqrt17)/2


t2
= (-3 - sqrt17)/2


But cos x/2 =
t


cos x/2 = t1


cos x/2 = (-3 +
sqrt17)/2


 x = +/-2arccos[(-3 + sqrt17)/2] +
2kpi


cos x/2 = t2


cos x/2 =
(-3 - sqrt17)/2, impossible since cos a > =
- 1.


The only solution of the equation is:
{+/-2arccos[(-3 + sqrt17)/2] + 2kpi}.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...