Saturday, January 11, 2014

Given sinx=1/4 and cosx=3/4 what is sec2x ?

Since the formula for sec 2x = 1/cos 2x, we'll have
to find out the value of cos 2x, given the values of sin x and cos
x.


cos 2x = cos (x+x)


cos 2x =
cos x*cos x - sin x*sin x


cos 2x = (cos x)^2 - (sin
x)^2


We'll substitute cos x and sin x by the given
values:


sinx =1/4
and cosx=3/4


cos 2x = (3/4)^2 -
(1/4)^2


cos 2x = (3/4 - 1/4)(3/4 +
1/4)


cos 2x = 2/4


cos 2x =
1/2


2x = pi/3 + 2k*pi


x =
pi/6 + 2k*pi


We'll substitute the value of cos 2x in the
formula of sec 2x:


sec 2x =
1/(1/2)


The exact value of sec 2x =
2.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...