We'll apply the chain rule to determine the result of the
first derivative:
dy/dx =
d[ln(1+2x+2x^2)]/dx
dy/dx =
[d(1+2x+2x^2)/dx]/(1+2x+2x^2)
dy/dx = [(d/dx)(1) +
(d/dx)(2x) + (d/dx)(2x^2)]/(1+2x+2x^2)
dy/dx = (0 + 2 +
4x)/(1+2x+2x^2)
dy/dx = (4x + 2)/(2x^2 + 2x +
1)
dy/dx = 2(2x + 1)/(2x^2 + 2x +
1)
The result of differentiating y
is:
dy/dx = 2(2x + 1)/(2x^2 +
2x + 1)
No comments:
Post a Comment