Wednesday, January 8, 2014

Differentiate y= ln(1+2x+2x^2)?

We'll apply the chain rule to determine the result of the
first derivative:


dy/dx =
d[ln(1+2x+2x^2)]/dx


dy/dx =
[d(1+2x+2x^2)/dx]/(1+2x+2x^2)


dy/dx = [(d/dx)(1) +
(d/dx)(2x) + (d/dx)(2x^2)]/(1+2x+2x^2)


dy/dx = (0 + 2 +
4x)/(1+2x+2x^2)


dy/dx = (4x + 2)/(2x^2 + 2x +
1)


dy/dx = 2(2x + 1)/(2x^2 + 2x +
1)


The result of differentiating y
is:


dy/dx = 2(2x + 1)/(2x^2 +
2x + 1)

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...