Friday, December 13, 2013

Given sin x = 2/3 and sin y=1/3, 0

First of all, we'll have to find out if tan x and tan y
are positive or negative. From enunciation, we'll have tan x belongs to the first
quadrant and it is positive and tan y belongs to the second quadrant and it is
negative.


tan x=sin x/cos
x


cos x = sqrt[1 - (sin
x)^2]


cos x = sqrt[1 -
(2/3)^2]


cos x = sqrt (1 -
4/9)


cos x = (sqrt 5)/3


cos y
= - sqrt[1 - (sin y)^2]


cos y = - sqrt[1 -
(1/3)^2]


cos y = - sqrt[1 -
(1/9)]


cos y = - 2(sqrt
2)/3


tan x= (2/3)/[(sqrt
5)/3]


tan x = 2(sqrt5)/5


tan
y= (1/3)/[- 2(sqrt 2)/3]


tan y =
(-sqrt2)/4


tan (x+y)=(tan x + tan y)/(1-tan x*tan
y)


tan (x+y)=[2(sqrt5)/5+
(-sqrt2)/4]/[1+2(sqrt10)/20]


tg (x+y)=
[8(sqrt5) - 5(sqrt2)]/[20+2(sqrt10)]

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...