To calculate the expression we'll have to transform the
sum into a product. The terms of the su are not like trigonometric
functions.
We'll re-write the second term: sqrt(1-sin^2x)
= sqrt (cos x)^2
sin x + sqrt(1-sin^2x) = sin x + sqrt (cos
x)^2
sin x + sqrt(1-sin^2x) = sin x + cos
x
We'll express the function cosine,
depending on the function sine.
cos x= sin
(90-x)
The expression will
become:
sin x + cos x = sinx + sin
(90-x)
Now we can transform the expression into a
product:
sin x + cos x = 2 sin (x+90-x)/2*cos
(x-90+x)/2
sin x + cos x = 2 sin 45*cos
[-(90-2x)/2]
sin x + cos x = 2* (sqrt2/2)*cos
(45-x)
sin x + cos x = sqrt 2*(cos 45*cos x
+ sin 45*sin x)
No comments:
Post a Comment