We have to prove the identity: (tan^4)t + (tan^2)t + 1 =
[(1 - (sin^2)t * (cos^2) t] / (cos^4) t
First we write it
in a more regular way:
(tan t)^4 + (tan t)^2 + 1 = [(1 -
(sin t)^2 * (cos t)^2] / (cos t)^4
Let's start with the
left hand side:
(tan t)^4 + (tan t)^2 +
1
use tan t = sin t / cos
t
=> (sin t / cos t)^4 + (sin t / cos t)^2 +
1
=> (sin t)^4 / (cos t)^4 + (sin t)^2 / (cos t)^2 +
1
make the denominator the same for all the
terms
=> (sin t)^4/(cos t)^4 + (sin t)^2*(cos
t)^2/(cos t)^4 + (cos t)^4/ (cos t)^4
=> [(sin t)^4
+ (sin t)^2*(cos t)^2 + (cos t)^4]/ (cos t)^4
Now we know
that(a +b)^2 = a^2 + b^2 + 2ab
=> a^2 + b^2 + ab =
(a + b)^2 - ab
take (sin t)^2 = a and (cos t)^2 =
b
[(sin t)^4 + (sin t)^2*(cos t)^2 + (cos t)^4]/ (cos
t)^4
=> [((sin t)^2 + (cos t)^2)^2 - (sin t)*(cos
t)]/( cos t)^4
now use the relation (sin t)^2 + (cos t)^2 =
1
=> [1 - (sin t)*(cos t)]/( cos
t)^4
which is the right hand
side.
Therefore we prove the identity: (tan
t)^4 + (tan t)^2 + 1 = [(1 - (sin t)^2 * (cos t)^2] / (cos
t)^4
No comments:
Post a Comment