Friday, February 27, 2015

Prove the following identity: (tan^4)t + (tan^2)t + 1 = [(1 - (sin^2)t * (cos^2) t] / (cos^4) t I asked this same question before but the...

We have to prove the identity: (tan^4)t + (tan^2)t + 1 =
[(1 - (sin^2)t * (cos^2) t] / (cos^4) t


First we write it
in a more regular way:


(tan t)^4 + (tan t)^2 + 1 = [(1 -
(sin t)^2 * (cos t)^2] / (cos t)^4


Let's start with the
left hand side:


(tan t)^4 + (tan t)^2 +
1


use tan t = sin t / cos
t


=> (sin t / cos t)^4 + (sin t / cos t)^2 +
1


=> (sin t)^4 / (cos t)^4 + (sin t)^2 / (cos t)^2 +
1


make the denominator the same for all the
terms


=> (sin t)^4/(cos t)^4 + (sin t)^2*(cos
t)^2/(cos t)^4 + (cos t)^4/ (cos t)^4


=> [(sin t)^4
+ (sin t)^2*(cos t)^2 + (cos t)^4]/ (cos t)^4


Now we know
that(a +b)^2 = a^2 + b^2 + 2ab


=> a^2 + b^2 + ab =
(a + b)^2 - ab


take (sin t)^2 = a and (cos t)^2 =
b


[(sin t)^4 + (sin t)^2*(cos t)^2 + (cos t)^4]/ (cos
t)^4


=> [((sin t)^2 + (cos t)^2)^2 - (sin t)*(cos
t)]/( cos t)^4


now use the relation (sin t)^2 + (cos t)^2 =
1


=> [1 - (sin t)*(cos t)]/( cos
t)^4


which is the right hand
side.


Therefore we prove the identity: (tan
t)^4 + (tan t)^2 + 1 = [(1 - (sin t)^2 * (cos t)^2] / (cos
t)^4

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...