It is given that u^2 = v^2 + (m/n)((u-v)^2) and we have to
prove that : v/u = (m-n)/(m+n)
u^2 = v^2 +
(m/n)((u-v)^2)
=> u^2 - v^2 =
(m/n)((u-v)^2)
=> (u^2 - v^2)/ (u-v)^2 =
(m/n)
=> (u - v) ( u + v) / ( u - v)^2 =
(m/n)
=> (u + v) / (u - v) =
m/n
=> (u + v) / (u - v) + 1 = (m/n) +
1
=> (u + v + u - v) / (u - v) = (m + n) /
n
=> 2u / ( u- v) = (m + n) /
n
=> (u - v) / 2u = n/ ( m+
n)
=> (u - v) / u = 2n/ (m +
n)
=> u / u - v / u = 2n / ( m +
n)
=> 1 - v / u = 2n / ( m +
n)
=> v / u = 1 - 2n / ( m +
n)
=> v / u = (m + n - 2n ) / (
m+n)
=> v/ u = (m - n) / ( m +
n)
We prove that v/u = (m - n)/( m + n) if
u^2 = v^2 + (m/n)((u-v)^2)
No comments:
Post a Comment