Tuesday, May 20, 2014

What is the function y if dy/dx=13x^14+4x^5-2x ?

To determine a function, when knowing it's derivative,
we'll have to determine te indefinite integral of the expression of
derivative.


We'll determine the indefinite integral of
f'(x)=13x^14+4x^5-2x.


Int f'(x)dx = f(x) +
C


Int (13x^14+4x^5-2x)dx


We'll
apply the property of the indefinite integral, to be
additive:


Int (13x^14+4x^5-2x)dx = Int (13x^14)dx + Int
(4x^5)dx - Int (2x)dx 


Int (13x^14)dx = 13*x^(14+1)/(14+1)
+ C


Int (13x^14)dx = 13x^15/15 + C
(1)


Int (4x^5)dx = 4*x^(5+1)/(5+1) +
C


Int (4x^5)dx = 4*x^6/6 + C
(2)


Int 2xdx = 2*x^2/2 + C


Int
2xdx = x^2 + C (3)


We'll add:
(1)+(2)-(3)


Int (13x^14+4x^5-2x)dx = 13x^15/15 + 4*x^6/6 -
x^2 + C


So, the function
is:


y = 13x^15/15 + 4*x^6/6 -
x^2

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...