To determine a function, when knowing it's derivative,
we'll have to determine te indefinite integral of the expression of
derivative.
We'll determine the indefinite integral of
f'(x)=13x^14+4x^5-2x.
Int f'(x)dx = f(x) +
C
Int (13x^14+4x^5-2x)dx
We'll
apply the property of the indefinite integral, to be
additive:
Int (13x^14+4x^5-2x)dx = Int (13x^14)dx + Int
(4x^5)dx - Int (2x)dx
Int (13x^14)dx = 13*x^(14+1)/(14+1)
+ C
Int (13x^14)dx = 13x^15/15 + C
(1)
Int (4x^5)dx = 4*x^(5+1)/(5+1) +
C
Int (4x^5)dx = 4*x^6/6 + C
(2)
Int 2xdx = 2*x^2/2 + C
Int
2xdx = x^2 + C (3)
We'll add:
(1)+(2)-(3)
Int (13x^14+4x^5-2x)dx = 13x^15/15 + 4*x^6/6 -
x^2 + C
So, the function
is:
y = 13x^15/15 + 4*x^6/6 -
x^2
No comments:
Post a Comment