Sunday, May 18, 2014

Use elementary fractions to write the fraction 1/(x^3+x^2+x+1)

To use in elementary fractions to write the fraction
1/(x^3+x^2+x+1).


x^3+x^2+x+1 =  (x^2(x+1) +1.(x+1) =
(x+1)(x^2+1).


Therefore  let 1/(x^2+x^2+x+1) = a/(x+1) +
(bx+c)/(x^2+1)....(1).


 We have to determine a, b and
c.


We multiply both sides of (1) by (x+1)(x^2+1) and we
get:


1 = a(x^2+1) +
(bx+c)(x+1)


 1 =  ax^2+a
+bx^2+bx+cx+c.


1 = (a+b)x^2+(b+c)x+ (a+c). We treat this as
an identity. So we can equate the coefficient of like terms on both
sides:


x^2 terms: 0 =
a+b...(1).


x terms = 0 =
b+c......(2).


Constant terms: 1 = a+c, or a+c =
1.....(3)


 (1) -(2): a - c =
0...(4).


(3)+(4) : 2a = 1. So a=
1/2.


(3-(4): 2c =  1. So c =
1/2.


Therfore we put a = 1/2 in (1) and get a+b = 0, or
(1/2 +b = 0. S = b= -1/2.


Therefore a = 1/2, b=-1/2 and c =
1/2.


So


1/(x^3+x^2+x+1) =
1/{2(x+1)} + (-x+1)/{2(x^2+1)}


1/(x^3+x^2+x+1) = 1/(2(x+1)}
+1/{2{x^2+1) - x/{2(x^2+1)}.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...