Tuesday, June 11, 2013

Prove the identity cotx*sinx=cosx/(cos^2x+sin^2x)

We have to prove that cot x*sin x = cos x /((cos x)^2 +
(sin x)^2)


Now we know that (cos x)^2 + (sin x)^2 =
1


Also, cot x = cos x / sin
x


So cot x*sin x = (cos x / sin x)* sin x = cos
x


cos x /((cos x)^2 + (sin x)^2) = cos x /1 = cos
x


Therefore both the sides are equal to cos
x.


We prove that cot x*sin x = cos x /((cos
x)^2 + (sin x)^2).

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...