We have to prove that cot x*sin x = cos x /((cos x)^2 +
(sin x)^2)
Now we know that (cos x)^2 + (sin x)^2 =
1
Also, cot x = cos x / sin
x
So cot x*sin x = (cos x / sin x)* sin x = cos
x
cos x /((cos x)^2 + (sin x)^2) = cos x /1 = cos
x
Therefore both the sides are equal to cos
x.
We prove that cot x*sin x = cos x /((cos
x)^2 + (sin x)^2).
No comments:
Post a Comment