Wednesday, October 24, 2012

If the quadratic equation 6x^2 + nx + 18 = 0 has one root twice that of the other what is n?

The roots of the quadratic equation ax^2 + bx + c = 0 are
given by [-b + sqrt (b^2 - 4ac)]/2a and [-b - sqrt (b^2 -
4ac)]/2a.


If one root of 6x^2 + nx + 18 = 0 is twice the
other root the ratio [-b + sqrt (b^2 - 4ac)]/2a / [-b - sqrt (b^2 - 4ac)]/2a should be 2
or 0.5


[[-b + sqrt (b^2 - 4ac)]/2a] / [[-b - sqrt (b^2 -
4ac)]/2a]


=> [-b + sqrt (b^2 - 4ac)] / [-b - sqrt
(b^2 - 4ac)]


[-n + sqrt (n^2 - 18*6*4)] / [ -n - sqrt(n^2 -
4*6*18] = 2


=> -n + sqrt(n^2 - 4*6*18) = -2n -
2*sqrt(n^2 - 4*6*18)


=> n = -3*sqrt(n^2 -
4*6*18)


=> n^2 = 9*(n^2 -
4*6*18)


=> 8n^2 =
9*4*6*18


=> n^2 =
486


=> n = sqrt 486 or n = -sqrt
486


[-n + sqrt (n^2 - 18*6*4)] / [ -n - sqrt(n^2 - 4*6*18]
= 1/2


=> -2n + 2*sqrt(n^2 - 4*6*18) = -n - sqrt(n^2
- 4*6*18)


=> n = 3*sqrt(n^2 -
4*6*18)


=> n^2 = 9*(n^2 -
4*6*18)


=> n^2 =
486


=> n = sqrt 486 and n = -sqrt
486


The required values of n are sqrt 486 and
n = -sqrt 486

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...