The question states that f(x) = 1/ (cos
x)^4.
We have to find the integral of f(x) = 1/ (cos
x)^4.
(cos x)^-4 = (sec x)^4 = (sec x)^2 * (sec
x)^2
=> ((tan x)^2 + 1)* (sec
x)^2
=> ((tan x)^2*(sec x)^2+ (sec
x)^2)
Int [ ((tan x)^2*(sec x)^2+ (sec
x)^2)]
=> Int [ ((tan x)^2*(sec x)^2] + Int [ (sec
x)^2)]
We know Int [ (sec x)^2)] = tan
x.
Now to determine Int [ ((tan x)^2*(sec
x)^2]
let t = tan x , dt / dx = (sec
x)^2
=> (sec x)^2 dx =
dt
So Int [ ((tan x)^2*(sec x)^2
dx]
=> Int [ t^2
dt]
=> t^3 / 3 +
C
=> (tan x )^3 / 3 +
C
So Int [ ((tan x)^2*(sec x)^2] + Int [ (sec
x)^2)]
=> tan x + (tan x )^3 / 3 +
C
The required result is tan x + (tan x )^3 /
3 + C
No comments:
Post a Comment