Sunday, June 3, 2012

Determine the expression of antiderivative of f(x)=1/cos^4(x)

The question states that f(x) = 1/ (cos
x)^4.


We have to find the integral of f(x) = 1/ (cos
x)^4.


(cos x)^-4 = (sec x)^4 = (sec x)^2 * (sec
x)^2


=> ((tan x)^2 + 1)* (sec
x)^2


=> ((tan x)^2*(sec x)^2+ (sec
x)^2)


Int [ ((tan x)^2*(sec x)^2+ (sec
x)^2)]


=> Int [ ((tan x)^2*(sec x)^2] + Int [ (sec
x)^2)]


We know Int [ (sec x)^2)] = tan
x.


Now to determine Int [ ((tan x)^2*(sec
x)^2]


let  t = tan x , dt / dx = (sec
x)^2


=> (sec x)^2 dx =
dt


So Int [ ((tan x)^2*(sec x)^2
dx]


=> Int [ t^2
dt]


=> t^3 / 3 +
C


=> (tan x )^3 / 3 +
C


So Int [ ((tan x)^2*(sec x)^2] + Int [ (sec
x)^2)]


=> tan x + (tan x )^3 / 3 +
C


The required result is tan x + (tan x )^3 /
3 + C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...