We need to prove that:
cos3A
= -3cosA + 4cos^3 A
We will start from the left sides and
prove the right sides.
We know
that:
cos3A = cos(2A + A)
Now
we will use the trigonometric identities to prove.
We know
that:
cos(a+b) = cosa*cosb -
sina*sinb
==> cos(2A+A) = cos2A*cosA -
sin2A*sinA
Now we know
that:
cos2A = 2cos^2 A
-1
sin2A =
2sinA*cosA
==> cos(2A+A) = (2cos^2 A -1)cosA -
2sinA*cosA*sinA
Let us
simplify:
==> cos(2A+A) = 2cos^3 A - cosA - 2sin^2 A
* cosA
Now we know that: sin^2 A = 1- cos^2
A
==> cos(2A+A) = 2cos^3 A - cosA -2(1-cos^2
A)*cosA
= 2cos^3 A - cosA -2cosA +
2cos^3 A
Now we will combine like
terms.
==> cos(2A+A) = 4cos^3 A -
3cosA
==> cos(3A) = -3cosA + 4cos^3
A......q.e.d
No comments:
Post a Comment