Wednesday, December 30, 2015

Proving Trigonometric Identities Prove: cos3A = -3cosA + 4cos^3A

We need to prove that:


cos3A
= -3cosA + 4cos^3 A


We will start from the left sides and
prove the right sides.


We know
that:


cos3A = cos(2A + A)


Now
we will use the trigonometric identities to prove.


We know
that:


cos(a+b) = cosa*cosb -
sina*sinb


==> cos(2A+A) = cos2A*cosA -
sin2A*sinA


Now we know
that:


cos2A = 2cos^2 A
-1


sin2A =
2sinA*cosA


==> cos(2A+A) = (2cos^2 A -1)cosA -
2sinA*cosA*sinA


  Let us
simplify:


==> cos(2A+A) = 2cos^3 A - cosA - 2sin^2 A
* cosA


Now we know that: sin^2 A = 1- cos^2
A


==> cos(2A+A) = 2cos^3 A - cosA -2(1-cos^2
A)*cosA


                       = 2cos^3 A - cosA -2cosA +
2cos^3 A


Now we will combine like
terms.


==> cos(2A+A) = 4cos^3 A -
3cosA


==> cos(3A) = -3cosA + 4cos^3
A......q.e.d

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...