We'll write the term from denominator cos 12x = cos
2*(6x)
We'll apply the
formula:
cos 2a = 2(cos a)^2 -
1
cos 2*(6x) = 2(cos 6x)^2 -
1
The denominator will
become:
5+cos12x = 5 + 2(cos 6x)^2 -
1
5+cos12x = 2(cos 6x)^2 +
4
2(cos 6x)^2 = 2[(cos 6x)^2 +
2]
Int f(x)dx = (1/2)Int sin 6xdx/[(cos 6x)^2 +
2]
We'll substitute cos 6x =
t.
We'll differentiate both
sides:
- 6 sin 6x dx = dt
sin
6x dx = -dt/6
We'll write the integral in
t:
Int f(x)dx = (-1/12)Int dt/(t^2 +
2)
(-1/12)Int dt/(t^2 + 2) = -(1/12*sqrt2)*arctan
t/sqrt2 + C
Int f(x)dx = -(1/12*sqrt2)*arctan (cos
6x)/sqrt2 + C
No comments:
Post a Comment