Thursday, October 8, 2015

Calculate the integral of y=sin6x/(5+cos12x).

We'll write the term from denominator cos 12x = cos
2*(6x)


We'll apply the
formula:


cos 2a = 2(cos a)^2 -
1


cos 2*(6x) = 2(cos 6x)^2 -
1


The denominator will
become:


5+cos12x = 5 + 2(cos 6x)^2 -
1


5+cos12x = 2(cos 6x)^2 +
4


2(cos 6x)^2 = 2[(cos 6x)^2 +
2]


Int f(x)dx = (1/2)Int sin 6xdx/[(cos 6x)^2 +
2]


We'll substitute cos 6x  =
t.


We'll differentiate both
sides:


- 6 sin 6x dx = dt


sin
6x dx = -dt/6


We'll write the integral in
t:


Int f(x)dx = (-1/12)Int dt/(t^2 +
2) 


 (-1/12)Int dt/(t^2 + 2)  = -(1/12*sqrt2)*arctan
t/sqrt2 + C


Int f(x)dx = -(1/12*sqrt2)*arctan (cos
6x)/sqrt2 + C

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...