We recognize the formula of the cosine of double angle
for:
1-2(sin a)^2 = cos
2a
Also, we recognize the formula for the sine of double
angle:
2sina*cosa =
sin2a
We'll re-write the ratio from the left
side:
(1 + sin 2a)/cos 2a =(cos a+sin a)/(cos a-sin
a)
But cos 2a = (cos a)^2 - (sin
a)^2
cos 2a = (cos a - sin a)(cos a + sin
a)
We'll re-write the identity, substituting cos
2a:
(1 + sin 2a)/(cos a - sin a)(cos a + sin a) =(cos a+sin
a)/(cos a-sin a)
We'll simplify and we'll
get:
(1 + sin 2a)/(cos a + sin a) = (cos a+sin
a)
1 + sin 2a = (cos a+sin
a)^2
We'll expand the
square:
1 + sin 2a = (cos a)^2+ 2sin a*cos a + (sin
a)^2
But (cos a)^2 + (sin a)^2 =
1
1 + sin 2a = 1 + 2sin a*cos
a
1 + sin 2a = 1 + sin 2a
q.e.d.
No comments:
Post a Comment