Thursday, October 23, 2014

Prove the following identity (1+2(sin a)(cos a))/(1-2(sin^2 a)=(cos a+sin a)/(cos a-sin a)

We recognize the formula of the cosine of double angle
for:


1-2(sin a)^2 = cos
2a


Also, we recognize the formula for the sine of double
angle:


2sina*cosa =
sin2a


We'll re-write the ratio from the left
side:


(1 + sin 2a)/cos 2a =(cos a+sin a)/(cos a-sin
a)


But cos 2a = (cos a)^2 - (sin
a)^2


cos 2a = (cos a - sin a)(cos a + sin
a)


We'll re-write the identity, substituting cos
2a:


(1 + sin 2a)/(cos a - sin a)(cos a + sin a) =(cos a+sin
a)/(cos a-sin a)


We'll simplify and we'll
get:


(1 + sin 2a)/(cos a + sin a) = (cos a+sin
a)


1 + sin 2a = (cos a+sin
a)^2


We'll expand the
square:


1 + sin 2a = (cos a)^2+ 2sin a*cos a + (sin
a)^2


But (cos a)^2 + (sin a)^2 =
1


 1 + sin 2a = 1 + 2sin a*cos
a


 1 + sin 2a =  1 + sin 2a
q.e.d.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...