Friday, October 24, 2014

If the polynomial f=x^4+x^2+1 is divided by g=x^2+2x+3 what is the reminder of division ?

To find the remainder if f(x) = x^4+x^2+1 is divided by
g(x) = x^2+2x+1.


 We divide x^4+x^2+1 by
x^2+2x+3.


x^2+2x+3) x^4+0*x^3 +x^2+0*x+1(
x^2-2x+2


                   x^4  +2x^3  
+3x^2


              
-------------------------------


        x^2+2x+3)-2x^3  
-2x^2 + 0*x+1(-2x


                          -2x^3 - 4x^2
-6x


                     
--------------------------------


                     x^2+2x+3)2x^2+6x+1
(2


                                      
2x^2+4x+6


                                     -------------------


                                               
2x -5 is the remainder.


Therefore f(x)/g(x) = (x^4+x^2+1)/
(x^2+2x+3) = x^2-2x+2 is the quotient and  2x-5 is the
remainder.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...