To find the remainder if f(x) = x^4+x^2+1 is divided by
g(x) = x^2+2x+1.
We divide x^4+x^2+1 by
x^2+2x+3.
x^2+2x+3) x^4+0*x^3 +x^2+0*x+1(
x^2-2x+2
x^4 +2x^3
+3x^2
-------------------------------
x^2+2x+3)-2x^3
-2x^2 + 0*x+1(-2x
-2x^3 - 4x^2
-6x
--------------------------------
x^2+2x+3)2x^2+6x+1
(2
2x^2+4x+6
-------------------
2x -5 is the remainder.
Therefore f(x)/g(x) = (x^4+x^2+1)/
(x^2+2x+3) = x^2-2x+2 is the quotient and 2x-5 is the
remainder.
No comments:
Post a Comment