Friday, March 1, 2013

Solve the derivative of expression: tan^2(ln(square root(4e^x+2x^2))) + cot^2(ln(square root(4e^x+2x^2)))

We notice that each term of the sum is a composed
function, so, we'll calculate the derivative of each
term.


We'll note the first term as f(x) and the 2nd term as
g(x).


f(x) = tan^2(ln(square
root(4e^x+2x^2)))


To determine the derivative of f(x),
we'll apply the chain rule:


f'(x) =
2tan{ln[sqrt(4e^x+2x^2)]}*(1/[cos(lnsqrt(4e^x+2x^2)]^2*[1/2sqrt(4e^x+2x^2)]*(4e^x +
4x)


We'll calculate the derivative of
g(x):


g'(x) =
-2cot{ln[sqrt(4e^x+2x^2)]}*(1/[sin(lnsqrt(4e^x+2x^2)]^2*[1/2sqrt(4e^x+2x^2)]*(4e^x +
4x)


Now, we'll add f'(x) +
g'(x):


tan{ln[sqrt(4e^x+2x^2)]}*(1/[cos(lnsqrt(4e^x+2x^2)]^2*[1/sqrt(4e^x+2x^2)]*(4e^x
+ 4x) - cot{ln[sqrt(4e^x+2x^2)]}*(1/[sin(lnsqrt(4e^x+2x^2)]^2*[1/sqrt(4e^x+2x^2)]*(4e^x
+ 4x)


We'll factorize by (4e^x +
4x)/sqrt(4e^x+2x^2)


 f'(x) + g'(x) = [(4e^x +
4x)/sqrt(4e^x+2x^2)]*{tan ln[sqrt(4e^x+2x^2)]/[cos(lnsqrt(4e^x+2x^2)]^2] - cot
ln[sqrt(4e^x+2x^2)]/[sin(lnsqrt(4e^x+2x^2)]^2}

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...