We'll expand the
binomial:
(a+b)^5=a^5+5a^4*b+10a^3*b^2+10a^2*b^3+5b^4*a+b^5
We'll
subtract a^5 and b^5 from expansion and we'll
get:
5a^4*b+10a^3*b^2+10a^2*b^3+5b^4*a
We'll
combine the middle terms and the extremes and we'll factorize
them:
5ab(a^3 + b^3) +
10a^2*b^2(a+b)
But the sum of cubes
is:
a^3 +b^3 = (a+b)(a^2 - ab +
b^2)
5ab(a+b)(a^2 - ab + b^2) +
10a^2*b^2(a+b)
We'll factorize by
5ab(a+b)
5ab(a+b)(a^2 - ab + b^2 +
2ab)
We'll combine like terms inside
brackets:
5ab(a+b)(a^2 + ab +
b^2)=5ab(a+b)(a^2 + ab + b^2) q.e.d.
No comments:
Post a Comment