Saturday, March 16, 2013

verify if the relationship is true? (a+b)^5-a^5-b^5=5ab(a+b)(a^2+ab+b^2)

We'll expand the
binomial:


(a+b)^5=a^5+5a^4*b+10a^3*b^2+10a^2*b^3+5b^4*a+b^5


We'll
subtract a^5 and b^5 from expansion and we'll
get:


5a^4*b+10a^3*b^2+10a^2*b^3+5b^4*a


We'll
combine the middle terms and the extremes and we'll factorize
them:


5ab(a^3 + b^3) +
10a^2*b^2(a+b)


But the sum of cubes
is:


a^3  +b^3 = (a+b)(a^2 - ab +
b^2)


5ab(a+b)(a^2 - ab + b^2) +
10a^2*b^2(a+b)


We'll factorize by
5ab(a+b)


5ab(a+b)(a^2 - ab + b^2 +
2ab)


We'll combine like terms inside
brackets:


5ab(a+b)(a^2 + ab +
b^2)=5ab(a+b)(a^2 + ab + b^2) q.e.d.

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...