Wednesday, June 29, 2011

Show that a.b = (1/4) |a+b|^2 - (1/4) |a-b|^2

Let us take the two vectors a and
b.


Their dot product is |a|*|b|*cos D, where D is the angle
between the vectors.


Let the vector a make an angle of A
with the horizontal and vector b make an angle of B with the
horizontal.


(1/4)*|a + b|^2 - (1/4)*|a -
b|^2


=> (1/4)[|a + b|^2 - (1/4)*|a -
b|^2]


=> (1/4)[[sqrt((|a|*sin A + |b|*sin B)^2 +
(|a|*cos A + |b|*cos B)^2)]^2 - [sqrt((|a|*sin A - |b|*sin B)^2 + (|a|*cos A - |b|*cos
B)^2)]^2 ]]


=> (1/4)[[sqrt(|a|^2*(sin A)^2 +
|b|^2*(sin B)^2 + 2|a|*|b|*sin A * sin B+ |a|^2*(cos A)^2 + |b|^2*(cos B)^2 +
2|a|*|b|*cos A * cos B]^2 -  [sqrt((|a|^2*(sin A)^2 + |b|^2*(sin B)^2 - 2|a|*|b|*sin A *
sin B+ |a|^2*(cos A)^2 + |b|^2*(cos B)^2 - 2|a|*|b|*cos A *
cosB]^2]


simplify using (cos x)^2 + (sin x)^2 =
1


=> (1/4)[[(|a|^2 + 2|a|*|b|*sin A * sin B +
2|a|*|b|*cos A * cos B] -  [(|a|^2 + |b|^2 - 2|a|*|b|*sin A * sin B - 2|a|*|b|*cos A *
cos B]]


=> (1/4)[4|a|*|b|*sin A * sin B +
4|a|*|b|*cos A * cos B]


=> [|a|*|b|*sin A * sin B +
|a|*|b|*cos A * cos B]


use cos (A - B) = cos A * cos B +
sin A * sin B


=> |a|*|b|*cos ( A -
B)


=> |a|*|b|*cos
D


which is
a.b


Therefore we prove that a.b = (1/4)*|a +
b|^2 - (1/4)*|a - b|^2

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...