Saturday, November 20, 2010

show that cos3B+cosB=2(cos2B)cosb.

We have to show that cos 3B + cos B = 2(cos 2B)* cos
B


We use the relations: cos 2B = 2*(cos B)^2 - 1 and cos 3B
= 4(cos B)^3 - 3cos B


We start with the left hand
side


cos 3B + cos B


=>
4(cos B)^3 - 3cos B + cos B


=> 4(cos B)^3 - 2*cos
B


=> 2* cos B ( 2* ( cos b)^2 -
1)


=> 2 * cos B * cos
2B


which is the right hand
side.


The required relation cos 3B + cos B =
2(cos 2B)* cos B is proved

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...