Sunday, November 14, 2010

How can we show that the derivative of sin x is cos x?

The derivative of a function f(x) is given by lim
d--> 0 [(f(x + d) – f(x))/d]


For the function f(x) =
sin x, f’(x) is given by


lim d--> 0 [(sin(x + d) –
sin(x))/d]


We use the following relations
here:


sin (a + b) = sin a*cos b + cos a* sin
b


lim x--> 0 [sin x /x] =
1


lim x-->0[cos x / x] = 0 {we can derive these too,
but that is not required here}


=> lim d--> 0
[(sin x* cos*d + cos x* sin d – sin(x))/d]


=> lim
d--> 0 [(sin x* (cos*d – 1) + cos x* sin
d)/d]


=> lim d--> 0 [(sin x* (cos*d – 1)]/d +
lim d-->0 [cos x* sin d)/d]


apply the limit
d-->0


=> sin x * 0 + cos x
*1


=> cos
x


Therefore for f(x) = sin x, f’(x) = cos
x

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...