cos(3pi/4 + x) + sin(2pi/4 - x) =
0
We will use trigonometric identities to
solve.
We know that:
cos(x+y)
= cosx*cosy - sinx*siny
==> cos(3pi/4+ x) =
cos3pi/4*cosx -
sin3pi/4*sinx
=
-1/sqrt2*cosx - 1/sqrt2 *
sinx
= -(cosx+sinx)/
sqrt2.............(1)
Also, we know
that:
sin(x-y) = sinx*cosy -
cosx*siny
==> sin(3pi/4 -x) = sin3pi/4*cosx -
cos3pi/4*sinx
= 1/sqrt2 * cosx
+ 1/sqrt2 * sinx
=
(cosx+sinx)/sqrt2................(2)
Now we will add (1)
and (2).
==> cos(3pi/4+x)+sin(3pi/4-x) =
-(cosx+sinx)/sqrt2 + (cosx+sinx)/sqrt2 = 0
==>
cos(3pi/4+x)+sin(3pi/4-x) = 0 .............q.e.d
No comments:
Post a Comment