Saturday, November 20, 2010

Prove: cos(3pie/4 + x) + sin(3pie/4 - x) = 0

cos(3pi/4  + x) + sin(2pi/4 - x) =
0


We will use trigonometric identities to
solve.


We know that:


cos(x+y)
= cosx*cosy - sinx*siny


==> cos(3pi/4+ x) =
cos3pi/4*cosx -
sin3pi/4*sinx


                               =
-1/sqrt2*cosx - 1/sqrt2 *
sinx


                               = -(cosx+sinx)/
sqrt2.............(1)


Also, we know
that:


sin(x-y) = sinx*cosy -
cosx*siny


==> sin(3pi/4  -x) = sin3pi/4*cosx -
cos3pi/4*sinx


                             = 1/sqrt2 * cosx
+ 1/sqrt2 * sinx


                            =
(cosx+sinx)/sqrt2................(2)


Now we will add (1)
and (2).


==> cos(3pi/4+x)+sin(3pi/4-x) =
-(cosx+sinx)/sqrt2 + (cosx+sinx)/sqrt2 = 0


==>
cos(3pi/4+x)+sin(3pi/4-x) = 0 .............q.e.d

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...