Wednesday, September 9, 2015

How to solve the equation uov(t)=0? u(t)=2t^2-1 v(t)=t-1

We have the functions u(t) = 2t^2 - 1 and v(t) = t
-1.


uov(t) = u(v(t))


v(t) = t
- 1


substituting t - 1 in
u(t)


=> 2*( t - 1)^2 -
1


As uov(t) = 0


=> 2*(
t - 1)^2 - 1 = 0


=> 2( t^2 + 1 - 2t) - 1 =
0


=> 2t^2 + 2 - 4t -
1=0


=> 2t^2 - 4t + 1
=0


t1 = [ 4 + sqrt ( 16 -
8)]/4


=> t1 = 1 + sqrt 2 /2 =
1.707


t2 = [ 4 - sqrt ( 16 -
8)]/4


=> t1 = 1 - sqrt 2 /2 =
.2928


Therefore t can take on the values 1 +
[(sqrt 2) / 2] and 1 - [(sqrt 2) /2].

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...