We have the functions u(t) = 2t^2 - 1 and v(t) = t
-1.
uov(t) = u(v(t))
v(t) = t
- 1
substituting t - 1 in
u(t)
=> 2*( t - 1)^2 -
1
As uov(t) = 0
=> 2*(
t - 1)^2 - 1 = 0
=> 2( t^2 + 1 - 2t) - 1 =
0
=> 2t^2 + 2 - 4t -
1=0
=> 2t^2 - 4t + 1
=0
t1 = [ 4 + sqrt ( 16 -
8)]/4
=> t1 = 1 + sqrt 2 /2 =
1.707
t2 = [ 4 - sqrt ( 16 -
8)]/4
=> t1 = 1 - sqrt 2 /2 =
.2928
Therefore t can take on the values 1 +
[(sqrt 2) / 2] and 1 - [(sqrt 2) /2].
No comments:
Post a Comment