f(x) =
[cos2x/(x^2+x+1)]^1//2
We need to find the first derivative
f'(x)
We will use the chain rule to find the
derivative.
Let f(x) = sqrt
u
==> f'(x) = (sqrtu)' = -1/2sqrtu *
u'
u= cos2x/(x^2+x+1)
Let us
calculate u'
u' = ( cos2x)'*(x^2+x+1) - (cos2x0*(x^2+x+1)'/
(x^2+x+1)^2
= -2sinx*(x^2+x+1) - (cos2x)*(2x+1) ] /
(x^2 +x+1)^2
Now we will substitute into
f'(x).
==> f'(x) = -1/2sqrtu *
u'
= -1/2sqrt(cos2x/(x^2+x+1) *
[(-2sin2x(x^2+x+1)-(cos2x)(2x+1)] /
(x^2+x+1)^2
==>f'(x) =
(2sin2x*(x^2+x+1) +(cos2x*(2x+1)]/
(2sqrt(cos2x/(x^2+x+1)*(x^2+x+1)^2
No comments:
Post a Comment