Sunday, November 16, 2014

Find the derivative of f(x)=[cos2x/(x^2+x+1)]^1/2

f(x) =
[cos2x/(x^2+x+1)]^1//2


We need to find the first derivative
f'(x)


We will use the chain rule to find the
derivative.


Let f(x) = sqrt
u


==> f'(x) = (sqrtu)' = -1/2sqrtu *
u'


u= cos2x/(x^2+x+1)


Let us
calculate u'


u' = ( cos2x)'*(x^2+x+1) - (cos2x0*(x^2+x+1)'/
(x^2+x+1)^2


     = -2sinx*(x^2+x+1) - (cos2x)*(2x+1) ] /
(x^2 +x+1)^2


Now we will substitute into
f'(x).


==> f'(x) = -1/2sqrtu *
u'


                 = -1/2sqrt(cos2x/(x^2+x+1) *
[(-2sin2x(x^2+x+1)-(cos2x)(2x+1)] /
(x^2+x+1)^2


==>f'(x) =
(2sin2x*(x^2+x+1) +(cos2x*(2x+1)]/
(2sqrt(cos2x/(x^2+x+1)*(x^2+x+1)^2

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...