We need to prove
that:
(tanx*sinx) / (sec^2 x -1) =
cosx
We will start from the left side and prove that it
equals cosx.
First we will rewrite using the trigonometric
identities.
We know that secx =
1/cosx
==> sec^2 x = 1/cos^2
x
==> (tanx*sinx)/(sec^2 x -1) =
(tanx*sinx)/(1/cos^2 x
-1)
=
(tanx*sinx)/[ (1-cos^2 x)/
cos^2x]
= cos^2
x(tanx*sinx) / (1-cos^2 x)
Also, we know that 1-cos^2 x =
sin^2
==> cos^2x(tanx*sinx) / sin^2
x
Now we know that tanx =
sinx/cosx
==> cos^2 x * sinx*sinx / cosx * sin^2
x
==> (cos^2 x * sin^2 x) / cosx * sin^2
x
Now we will reduce
similar.
==> cosx ......
q.e.d
No comments:
Post a Comment