Wednesday, August 6, 2014

Prove that: tanx*sinx / (sec^2 x -1) = cosx

We need to prove
that:


(tanx*sinx) / (sec^2 x -1) =
cosx


We will start from the left side and prove that it
equals cosx.


First we will rewrite using the trigonometric
identities.


We know that secx =
1/cosx


==> sec^2 x = 1/cos^2
x


==> (tanx*sinx)/(sec^2 x -1) =
(tanx*sinx)/(1/cos^2 x  
-1)


                                            =
(tanx*sinx)/[ (1-cos^2 x)/
cos^2x]


                                         = cos^2
x(tanx*sinx) / (1-cos^2 x)


Also, we know that 1-cos^2 x =
sin^2


==> cos^2x(tanx*sinx) / sin^2
x


Now we know that tanx =
sinx/cosx


==> cos^2 x * sinx*sinx / cosx * sin^2
x


==> (cos^2 x * sin^2 x) / cosx * sin^2
x


Now we will reduce
similar.


==> cosx ......
q.e.d

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...