Sunday, August 10, 2014

Prove sin x tan x = sec x - cos x

sin(x)*tan(x) = sec(x) -
cos(x)


We will start from the left
side.


==> We know that tan(x) =
sin(x)/cos(x)


==> sin(x)*tan(x) = sin(x)*sin(x)/
cos(x)


                             = sin^2 x/
cos(x)


But we know that sin^2 x = 1- cos^2
x


==> sin(x)*tan(x) = (1-cos^2 x) /
cosx


                             = 1/cos(x)  - cos^2 x /
cosx


But 1/cosx =
sec(x)


==> sin(x)*tan(x) = sec(x) -
cos(x).........q.e.d

No comments:

Post a Comment

Calculate tan(x-y), if sin x=1/2 and sin y=1/3. 0

We'll write the formula of the tangent of difference of 2 angles. tan (x-y) = (tan x - tan y)/(1 + tan x*tan y) ...